معادلات رياضية لتمشيط الشعر

واشنطن - فشل لاكشمينارايانان ماهاديفان، عالم الرياضيات الأميركي من أصل هندي، في تمشيط شعر ابنته فتوجه إلى تصميم معادلات رياضية للتمشيط، يمكن أن تكون لها مجموعة من التطبيقات في العديد من المجالات، كتصنيع المنسوجات والعمليات الكيميائية.
ويقول العالم الأميركي في تقرير نشره الأربعاء موقع جامعة هارفارد “أتذكر أن رذاذ فك تشابك الشعر كان يساعدني، لكن لا يزال يتعين عليّ أن أكون حريصا على التمشيط بلطف من خلال البدء من الأطراف الحرة، غير أن ابنتي سرعان ما استغنت عن خدماتي”.
وقد أثارت هذه المشكلة في نفسه أسئلة تتعلق بالهندسة وفك التشابك، وهي أسئلة رياضية مثيرة للاهتمام.
وفي ورقة بحثية جديدة، نُشرت في مجلة “سوفت ماتر”، استكشف ماهاديفان والمؤلفان المشاركان توماس بلامب رييس ونيكولاس تشارلز رياضيات التمشيط وفسّروا الأسباب التي تجعل تقنية فرشاة الشعر التي يستخدمها الكثيرون الطريقة الأكثر فاعلية لفك التشابك.
ولتبسيط المشكلة قام باحثون بمحاكاة خيطين متشابكين حلزونيا، بدلاً من رأس كامل من الشعر، وباستخدام هذا النموذج البسيط درسوا مسألة فك تشابك الخيطين عبر سن واحدة صلبة تتحرك طوليّا، تاركة خيوطا غير متشابكة في أعقابها، وقاسوا القوى والتشوهات المرتبطة بالتمشيط ثم قاموا بمحاكاتها عدديا.
ويقول نيكولاس تشارلز “وجدنا أن الضربات القصيرة التي تبدأ من الطرف الحر وتتحرك باتجاه النهاية المثبتة تزيل التشابك عن طريق إنشاء تدفق كمية رياضية تسمى ‘كثافة الارتباط’ التي تميز مقدار خيوط الشعر المضفرة”.
وتم استخدام المبادئ الرياضية للتمشيط بالفرشاة التي طورها ماهاديفان وتوماس بلامب ونيكولاس تشارلز من أجل تصميم خوارزميات لتمشيط الشعر بواسطة إنسان آلي.